

ОПТИЧЕСКИЕ МИКРОМЕТРЫ

Серия РФ656

Руководство по эксплуатации

Логойский тракт, 22, г. Минск 220090, Республика Беларусь тел/факс: +375 17 281 35 13

info@riftek.com www.riftek.com

Содержание

1. Меры предосторожности	4
2. Электромагнитная совместимость	4
3. Лазерная безопасность	4
4. Назначение	4
5. Основные технические данные	5
6. Пример обозначения при заказе	
7. Устройство и принцип работ	
8. Варианты использования	
9. Габариты и установка	8
9.1. Габаритные и установочные размеры	8
10. Подключение	
10.1. Микрометры без логических выходов	
10.2. Микрометры с логическими выходами	
10.3. Микрометры с Ethernet интерфейсом	
10.4. Микрометры с кабельным вводом и кабеля	
10.5. Кабель Ethernet	
11. Конфигурационные параметры	12
11.1. Параметр синхронизации	
11.2. Период выборки	
11.3. Усреднене результата	
11.4. Количество усредняемых значений	
11.5. Тип результата	
11.6. Количество границ	
11.7. Номера контролируемых границ	13
11.8. Номинальное значение и допуска	
11.9. Режим работы логических выходов	
11.10. Заводские значения параметров по умолчанию	
12. Описание последовательного интерфейса	
12.1. Порт RS232	
12.2. Порт RS485	15
12.3. Режимы передачи данных	
12.4. Конфигурационные параметры	
12.4.1. Скорость передачи данных через последовател	
12.4.2. Сетевой адрес	
12.4.3. Таблица заводских значений параметров	15
12.5. Протокол обмена	
12.5.1. Формат последовательной посылки данных	16
12.5.2. Типы сеансов связи	
12.5.3. Запрос	16
12.5.4. Сообщение, MSG	16
12.5.5. Ответ	16
12.5.6. Поток данных	17
12.5.7. Коды запросов и список параметров	17
13. Описание Ethernet интерфейса	
13.1. Режимы работы	
13.2. Протоколы передачи	
13.3. Формат пакета, МАС-уровень	
13.4. Формат пакета, IP/UDP	
14. Аналоговые выходы	

14.1. Режимы передачи данных	
14.2. Токовый выход 420 мА	20
14.3. Выход по напряжению 010В	
14.4. Конфигурационные параметры	20
14.4.1. Диапазон аналогового выхода	
14.4.2. Режим работы аналогового выхода	
 Коды запросов 	22
15.1. Таблица кодов запросов	22
I 6. Список параметров	23
16.1. Параметры включения	
16.2. Параметры синхронизации	23
16.3. Параметры усреднения	
16.4. Параметры типа измерений	
16.5. Параметры номинального значения и допусков	
16.6. Параметры управления логическими выходами	24
16.7. Параметры последовательного интерфейса	
16.8. Параметры аналогового выхода	
16.9. Параметры Ethernet	
16.10. Заводские значения параметров	
16.11. Примечания	
16.12. Примеры установки параметров	
16.13. Примеры сеансов связи	
I7. Примеры Ethernet пакетов	
17.1. Вид пакета MAC	
17.2. IP/UDP	31
I8. Программа параметризации	32
18.1. Назначение	
18.2. Установка соединения с микрометром	
18.3. Настройка и сохранение параметров микрометра	
18.4. Сохранение параметров и восстановление заводских настроек	
19. Работа с микрометром	
20. Примеры настройки непрерывного потока данных	
21. Библиотека RF65X	
22. Гарантийные обязательства	
23. Изменения	

1. Меры предосторожности

- Используйте напряжение питания и интерфейсы, указанные в спецификации на микрометр.
- При подсоединении/отсоединении кабелей питание микрометра должно быть отключено.
- Не используйте микрометры вблизи мощных источников света.
- Для получения стабильных результатов после включения питания необходимо выдержать порядка 20 минут для равномерного прогрева микрометра.

2. Электромагнитная совместимость

Микрометры разработаны для использования в промышленности и соответствуют следующим стандартам:

- EN 55022:2006 Оборудование информационных технологий. Характеристики радиопомех. Пределы и методы измерений.
- EN 61000-6-2:2005 Электромагнитная совместимость. Общие стандарты. Помехоустойчивость к промышленной окружающей среде.
- EN 61326-1:2006 Электрооборудование для измерения, управления и лабораторного использования. Требования к электромагнитной совместимости. Общие требования.

3. Лазерная безопасность

В микрометрах установлен светодиод или полупроводниковый лазер с непрерывным излучением и длиной волны 660 нм. Максимальная выходная мощность лазера <0,2 мВт. Микрометры относятся к классу 1 лазерной безопасности. На корпусе датчиков размещена предупреждающая этикетка.

При работе с микрометром необходимо соблюдать следующие меры безопасности:

- не смотрите в лазерный луч длительный период времени
- не разбирайте микрометр

4. Назначение

Оптические микрометры предназначены для бесконтактного измерения и контроля диаметров, зазоров, перемещения/положения кромок технологических объектов.

Серия включает 3 модели с измерительным диапазоном от 5 до 25 мм.

5. Основные технические данные

Модель РФ656-		5	5 10 25		
Рабочий,	Рабочий диапазон, мм		±1x5	±3x10	±5x 25
Расстоян	ие "и:	злучатель-приемник", мм	25	56	63
Минимал	Минимальный размер объекта, мм		0.03	0,05	0,1
Погрешно	ость,	мкм	±0,3 ±0,5 ±1		
 Максимальная частота обновления данных, Гц		2000	10000	10000	
Источник	излу	чения		Светодиод	
Класс лаз	верно	й безопасности		1 (IEC60825-1)	
Выходной		цифровой	RS232 (макс. 921,6 Кбит/с) или RS485 (макс. 921,6 Кби или Ethernet и (RS32 или RS485)		,
интерфейс аналоговый		420 мА (н	нагрузка ≤ 500 Ом) ил	и 010 В	
Вход вне	шней	синхронизации	2,4 – 5 B (CMOS, TTL)		
Логическ	ий вы	ход	три выход	а, NPN: 100 мА max; 4	40 B max
Напряжен	Напряжение питания, В			24 (936)	
Потребляемая мощность, Вт		мощность, Вт		1,52	
<u>.</u>	Класс защиты			IP67	
Устойчивость к внешним воздействи- ям	Уров	ень вибраций	20g/101000Гц, 6 часов для каждой из XYZ осей		из XYZ осей
ਤੂੰ ਕੂ ਨੂੰ ਨੂੰ Ударные нагрузки		30 g/6 мс			
CTO K B B03	Окру	жающая температура, °С	-10+60		
Относительная влажность		5-95%			
Материал корпуса		алюминий			
Вес (без кабеля), грамм 600		600	600		

¹ определена для контроля положения границы типа "нож".

6. Пример обозначения при заказе

РФ656-X-SERIAL-ANALOG-IN-LOUT-CC-M-AK

Символ	Наименование
X	Рабочий диапазон, мм
SERIAL	Тип последовательного интерфейса: RS232 - 232, или RS485 - 485, или (Ethernet и RS232) – 232-ET, или (Ethernet и RS485) – 485-ET
ANALOG	Наличие аналогового выхода по току (I) или по напряжению (U)
LOUT	Наличие программируемых логических выходов
IN	Наличие входа синхронизации
CC	Кабельный ввод - CG, либо разъем - CC.
M	Длина кабеля, м
AK	Наличие системы обдува окон

Пример. РФ656-25-232-I-IN-CG-3 — рабочий диапазон — 25 мм, последовательный порт RS232, есть токовый выход 4...20мA, есть вход синхронизации, кабельный ввод, длина кабеля 3 м.

Допустимые модификации:

Модель	Допустимые значения параметров
РФ656-5-SERIAL-ANALOG-	SERIAL – 232, 485
LOUT-IN-CC-M-AK	ANALOG – нет, I, U
	LOUT – HET, LOUT
	IN - IN
	CC – CG
	М – 0,1м10м
	AK – het, AK
РФ656-10-SERIAL-ANALOG-	SERIAL – 232, 485, 232-ET, 485-ET
LOUT-IN-CC-M-AK	ANALOG – нет, I, U
	LOUT – нет, LOUT
	IN - IN
	CC – CG, CC
	М — 0,1м10м
	АК – нет, АК
РФ656-25-SERIAL-ANALOG-	SERIAL – 232, 485, 232-ET, 485-ET
LOUT-IN-CC-M-AK	ANALOG – нет, I, U
	LOUT – нет, LOUT
	IN - IN
	CC – CG, CC
	М — 0,1м10м
	АК – нет, АК

7. Устройство и принцип работ

В основу работы микрометра положен теневой принцип, рис.1. Микрометр состоит из двух блоков – излучателя и приемника.

Излучение светодиода 1 коллимируется объективом 2. При размещении объекта в области коллимированного пучка его изображение формируется телецентрической системой 3 на линейке фотоприемников 4. По положению теневой границы (границ) процессор 5 рассчитывает положение (размер) объекта.

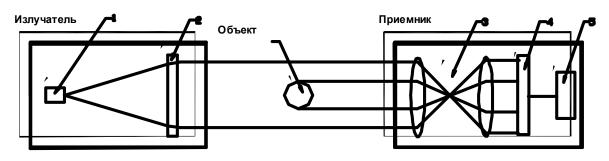
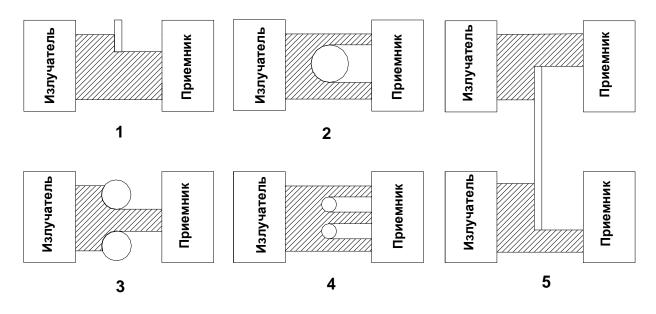
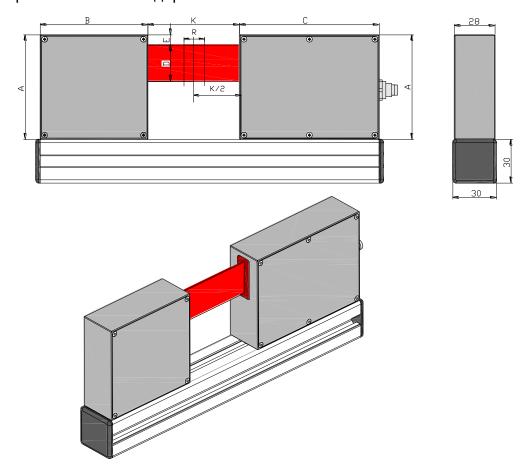


Рисунок 1

8. Варианты использования

Варианты использования микрометра для контроля технологических объектов показаны на рис. 2. Рис.2.1 – измерение положения края; рис.2.2. – измерение диаметра или положения; рис.2.3. – измерение величины зазора или положения, рис.2.4. – измерение внешнего или внутреннего размера или положения нескольких объектов; рис.2.5. – измерение размера (диаметра) или положения крупногабаритных объектов (используются два микрометра).




Рисунок 2.

9. Габариты и установка

9.1. Габаритные и установочные размеры

Габаритные и установочные размеры микрометров показаны на рис.3. Микрометр выполнен из анодированного алюминия.

	А, мм	В, мм	С, мм	D, мм	Е, мм	К, мм	R, мм
РФ656-5	66	50	158	5	14	28	2
РФ656-10	50	70	126	10	11,5	56	6
РФ656-25	72	74	96	25	7	63	10

Рисунок 3

10. Подключение

Микрометры оснащаются кабельным вводом (опция CG), либо разъемом (опция CC). Микрометры с Ethernet интерфейсом содержат два кабельных ввода или два разъема.

10.1. Микрометры без логических выходов.

На микрометре установлен разъем Binder 702-8. Номера контактов разъема и место его установки показано на рисунке 4.

Рисунок 4

Назначение контактов разъема приведено в таблице:

Модель микрометра	Номер контакта	Назначение
232 - U/I - IN-AL – CC	1	IN
	2	Gnd (питание)
	3	TXD
	4	RXD
	5	Gnd (Общий для сигналов)
	6	AL
	7	U/I
	8	Питание U+
485 - U/I - IN-AL - CC	1	IN
	2	Gnd (питание)
	3	DATA+
	4	DATA-
	5	Gnd (Общий для сигналов)
	6	AL
	7	U/I
	8	Питание U+

10.2. Микрометры с логическими выходами

На микрометре установлен разъем Binder 423-14. Номера контактов разъ-

ема и место его установки показано на рисунке 5.



Рисунок 5

Назначение контактов разъема приведено в таблице:

Модель микрометра	Номер контакта	Назначение
323 - U/I - IN-AL - TTL-OUT - CC	Α	IN
	С	Gnd (питание)
	E	TXD

		DVD
	G	RXD
	J	Gnd (Общий для сигналов)
	L	AL
	M	U/I
	N	Питание U+
	О	NormLimit
	Р	UpLimit
	R	LowLimit
	S	N/C
	Т	N/C
	U	N/C
485 - U/I - IN-AL - TTL-OUT - CC	A	IN
	С	Gnd (питание)
	E	DATA+
	G	DATA-
	J	Gnd (Общий для сигналов)
	L	ÀL ,
	M	U/I
	N N	Питание U+
	Ö	NormLimit
	P	UpLimit
	R	LowLimit
	S	N/C
	Ĭ	N/C
	ΰ	
	U	N/C

10.3. Микрометры с Ethernet интерфейсом

Микрометры содержат дополнительный разъем Binder 712-4. Номера контактов и место установки разъема показаны на рисунке 6.

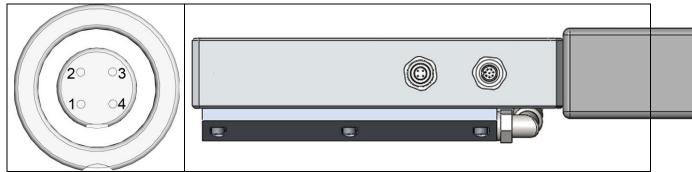


Рисунок 6

Назначение контактов приведено в таблице:

Модель микрометра	Номер контакта	Назначение
ET	1	TX+
	2	TX-
	3	RX+
	4	RX-

10.4. Микрометры с кабельным вводом и кабеля.

Место установки кабельного ввода показано на рисунке 7.

Рисунок 7

Назначение проводников кабеля микрометров с кабельным вводом и кабеля микрометров с коннектором приведено в таблице:

Модель микрометра	Номер контакта разъема		Назначение	Цвет провода
232-U/I-IN - CG	свободный проводник	-	IN	Белый
	свободный проводник	-	Gnd (питание)	Коричневый
	DB9	2	TXD	Зеленый
	DB9	3	RXD	Желтый
	DB9	5	Gnd (Общий для сигналов)	Серый
	свободный проводник	-	AL	Розовый
	свободный проводник	-	U/I	Синий
	свободный проводник	-	Питание U+	Красный
485-U/I-IN – CG	свободный проводник	-	IN	Белый
	свободный проводник	-	Gnd (питание)	Коричневый
	DB9	8	DATA+	Зеленый
	DB9	7	DATA-	Желтый
	DB9	5	Gnd (Общий для сигналов)	Серый
	свободный проводник	-	AL	Розовый
	свободный проводник	-	U/I	Синий
	свободный проводник	-	Питание U+	Красный
232-U/I-IN-AL-LOUT-CG	свободный проводник	-	IN	Белый
	свободный проводник	-	Gnd (питание)	Коричневый
	DB9	2	TXD	Зеленый
	DB9	3	RXD	Желтый
	DB9	5	Gnd (Общий для сигналов)	Серый
	свободный проводник	-	AL	Розовый
	свободный проводник	-	U/I	Синий
	свободный проводник	-	Питание U+	Красный
	свободный проводник	-	NormLimit	Бел.Зеленый
	свободный проводник	-	UpLimit	Красн.Синий
	свободный проводник	-	LowLimit	Сер.Розовый
485 - U/I - IN-AL - TTL-	свободный проводник	-	IN	Белый
OUT - CG	свободный проводник	-	Gnd (питание)	Коричневый
	DB9	8	DATA+	Зеленый
	DB9	7	DATA-	Желтый
	DB9	5	Gnd (Общий для сигналов)	Серый
	свободный проводник	-	AL	Розовый
	свободный проводник	-	U/I	Синий
	свободный проводник	-	Питание U+	Красный
	свободный проводник	-	NormLimit	Бел.Зеленый
	свободный проводник	-	UpLimit	Красн.Синий
	свободный проводник	-	LowLimit	Сер.Розовый

10.5. Кабель Ethernet

Место установки кабельного ввода Ethernet показано на рисунке 8.

Назначение проводников кабеля приведено в таблице:

Модель датчика	Назначение	Цвет провода
ET	TX+	Оранжевый
	TX-	Бело-оранжевый
	RX+	Зеленый
	RX-	Бело-зеленый

11. Конфигурационные параметры

Характер работы микрометра определяют его конфигурационные параметры, изменение которых производится путем передачи команд через последовательный порт RS232 или RS485. Основные параметры:

11.1. Параметр синхронизации

Данный параметр задает один из трех вариантов выборки результата при работе микрометра в режиме потока данных:

- асинхронная передача;
- синхронная передача, выборка по времени;
- синхронная передача, выборка по внешнему входу.

В режиме <u>асинхронной передачи</u> микрометр автоматически по интерфейсу передает результат измерений по мере его готовности.

При установке режима выборки синхронной передачи <u>по времени</u> микрометр передает результат измерения в соответствии с заданным интервалом времени (периодом выборки).

При установке режима выборки синхронной передачи <u>по внешнему входу</u> микрометр передает результат при переключении входа внешней синхронизации (вход IN) с учетом установленного коэффициента деления.

Примечание: режим работы каждого из интерфейсов может быть установлен независимо.

11.2. Период выборки

Если установлен режим выборки по времени, то параметр "период выборки" определяет интервал времени, через который микрометр должен автоматически <u>передавать</u> результат измерения. Значение интервала времени задается в дискретах по 0.1мс. *Например,* для значения параметра, равного 100, данные по последовательному интерфейсу передаются с периодом 0,1*100 = 10 мс.

Если установлен режим выборки по внешнему входу, то параметр "период выборки" определяет коэффициент деления для входа внешней синхронизации. *Например*, если параметр равен 100, данные по последовательному интерфейсу передаются с приходом на вход IN микрометра каждого 100-го импульса синхронизации.

Примечание 1. Необходимо отметить, что параметры "режим выборки" и "период выборки" управляют только передачей данных. Алгоритм работы микрометра построен таким образом, что собственно измерения выполняются постоянно с максимально возможным темпом, определяемым временем измерительного цикла, результат измерения заносится в буфер и хранится в нем до поступления нового результата. Указанные параметры определяют способ выдачи результата из этого буфера.

Примечание 2. Если для приема результата используется последовательный интерфейс, то при задании малых интервалов периода выборки следует учитывать время, необходимое для передачи данных на выбранной скорости передачи. Если время передачи превосходит период выборки, то именно оно будет определять темп передачи данных.

Примечание 3. Необходимо учитывать, что микрометры отличаются некоторым разбросом параметров внутреннего генератора, что влияет на точность периода выборки по времени.

11.3. Усреднене результата

Усреднение может работать в двух режимах:

- отключено, нет усреднения.
- усреднение по количеству результатов.

При установке <u>усреднения по количеству результатов</u> вычисляется скользящее среднее.

11.4. Количество усредняемых значений

Данный параметр определяет количество исходных результатов, по которым берется среднее для формирования выходного значения. Исходные результаты помещаются в кольцевой буфер заданного размера, и новое значение среднего вычисляется каждый раз после поступления нового результата, в этом смысле выходная величина является скользящим средним.

Применение усреднения позволяет уменьшить выходной шум и повысить разрешающую способность микрометра.

Усреднение по количеству результатов не влияет на темп обновления данных в выходном буфере микрометра.

Примечание. Максимальное значение параметра - 127.

11.5. Тип результата

В качестве результата микрометр может передать:

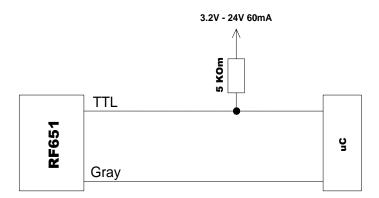
- размер объекта, или
- положение, или
- отклонение размера (положения) от заданного (номинального) значения

11.6. Количество границ

Под границами подразумеваются переходы "свет-тень", либо "тень-свет", которые создает теневое изображение объекта. Измерение производится только в том случае, если количество обнаруженных микрометром границ соответствует данному параметру.

11.7. Номера контролируемых границ

В измерительной области может находиться до 128 границ, однако измерения проводятся по отношению к любым двум границам (далее – границы A и B), номера которых задаются данным параметром. Отсчет номеров границ ведется в направлении сканирования. Направление сканирования указано на корпусе приемника.


11.8. Номинальное значение и допуска

Номинальное значение (размер или положение) может быть передано как параметр, либо задано путем обучения. В процессе измерений микрометр контролирует выход размеров за допуск. Величины допусков также могут быть переданы в качестве параметров.

11.9. Режим работы логических выходов

Логические выходы микрометра используются для сигнализации нахождения контролируемого размера в допуске, а также выхода размера за пределы установленных допусков. Логику работы выходов можно изменять, т.е. сделать активным низкий либо высокий логический уровень. Схема подключения логических выходов показана на рисунке

11.10. Заводские значения параметров по умолчанию

Все параметры хранятся в энергонезависимой памяти микрометра. Корректное изменение параметров производится с помощью программы параметризации, поставляемой с микрометром, либо программой пользователя. Таблица заводских параметров, установленных по умолчанию, приведена в п. <u>15.10</u>.

12. Описание последовательного интерфейса

12.1. Порт RS232

Порт RS232 обеспечивает подключение "точка-точка" и позволяет подключать микрометр непосредственно к RS232 порту компьютера, либо контроллера.

12.2. Порт RS485

Порт RS485 в соответствии с принятым сетевым протоколом и аппаратными возможностями позволяет подключить микрометры к одному устройству сбора информации по схеме "общая шина".

12.3. Режимы передачи данных

По данным интерфейсам результаты можно получить тремя способами:

- по разовым запросам;
- асинхронным потоком данных (результаты передаются по мере их готовности);
- синхронным потоком данных (выборка по времени, либо по внешнему входу)

12.4. Конфигурационные параметры

12.4.1. Скорость передачи данных через последовательный порт

Данный параметр определяет скорость передачи данных по последовательному интерфейсу в дискретах по 2400 бит/с. *Например,* значение параметра, равное 4, задает скорость передачи 2400*4 = 9600 бит/с.

Примечание. Максимальная скорость передачи по интерфейсам RS232/RS485 – 921,6 кбит/с.

12.4.2. Сетевой адрес

Данный параметр определяет сетевой адрес датчика, оснащенного интерфейсом RS485.

Примечание. Сетевой протокол передачи данных предполагает наличие в сети одного "мастера", которым может быть компьютер или другое устройство сбора информации, и от 1 до 127 "помощников" (микрометр серии РФ651), поддерживающих этот протокол.

Каждому "помощнику" задается уникальный для данной сети идентификационный код — адрес устройства. Адрес устройства используется при формировании запросов по сети. Каждый из помощников принимает запросы, содержащие его личный адрес, а также адрес "0", который является широковещательным и может быть использован для формирования групповых команд, например для одновременного защелкивания значений всех датчиков, а также при работе с одним датчиком (как с портом RS232, так и с портом RS485).

12.4.3. Таблица заводских значений параметров

Наименование параметра	Значение
Скорость передачи данных (интерфейс RS232 или RS485)	230400
Сетевой адрес	1
Режим передачи данных	по запросу

12.5. Протокол обмена

12.5.1. Формат последовательной посылки данных

Посылка данных имеет следующий формат:

1 старт-бит	8 бит данных	1 бит нечетности	1 стоп-бит

Бит нечетности является дополнением 8-ми бит данных до четности.

12.5.2. Типы сеансов связи

Протокол обмена построен на сеансах связи, которые инициируются только внешним устройством, "мастером" (ПК, контроллер). Существуют сеансы связи двух видов, которые имеют следующую структуру:

- 1) "запрос", ["сообщение"] ["ответ"], <u>в квадратных скобках указаны необяза-</u> тельные элементы
- 2) "запрос" "поток данных" ["запрос"].

12.5.3. Запрос

"Запрос" (INC) — это <u>двухбайтная</u> посылка, полностью определяющая сеанс обмена. Посылка "запроса" - единственная из всех посылок сеанса связи, в которой в первом посылаемом байте <u>старший бит установлен в 0</u>, поэтому она служит для синхронизации начала сеанса. Кроме того, она содержит адрес устройства (ADR), код запроса (COD) и, возможно, сообщение [MSG].

Формат "запроса":

Байт 0	Байт 1	[Байты 2N]
INC0(7:0)	INC1(7:0)	MSG
0 ADR(6:0)	1 0 0 0 COD(3:0)	

12.5.4. Сообщение, MSG

"Сообщение" — это пакет данных, который может передаваться в сеансе связи "мастером".

Все посылки пакета сообщения содержат 1 в старшем разряде. Данные в посылках передаются потетрадно. При передаче байта сначала передается младшая тетрада, затем старшая. При передаче многобайтных значений передача начинается с младшего байта.

Формат двух посылок данных "сообщения" для передачи байта DAT(7:0):

_											
	DAT(7:0)										
				Ба	йт 0				Бай	т 1	
	1	0	0	0	DAT(3:0)	1	0	0	0	DAT(7:4)	

12.5.5. Ответ

"Ответ" — это пакеты данных, которые могут передаваться в сеансе связи "помощником".

Все посылки пакета сообщения содержат 1 в старшем разряде. <u>Данные в посылках передаются потемрадно.</u> При передаче байта сначала передается младшая тетрада, затем старшая. При передаче многобайтных значений передача начинается с младшего байта.

При передаче "ответа" в посылку данных добавляются:

• бит (SB), характеризующий обновление результата. Если бит равен "1" это означает, что результат в буфере передачи обновлен, если бит равен "0" - передается не обновленный результат (см. Примечание 1, п.10.2.). При передаче параметров бит SB равен "0";

два бита циклического двоичного счетчика пакетов (CNT). Значения битов счетчика пакетов одинаковы для всех посылок одного пакета. Значение счетчика пакетов инкрементируется при передаче каждого пакета и используется для формирования (сборки) пакета, а также контроля потери пакетов при приеме потока данных.

Формат двух посылок данных "ответа" для передачи байта DAT(7:0):

	DAT(7:0)						
	Байт 0					Байт	1
1	SB	CNT(1:0)	DAT(3:0)	1	SB	CNT(1:0)	DAT(7:4)

12.5.6. Поток данных

"Поток данных" — это бесконечная последовательность пакетов данных, передаваемая "помощником" "мастеру", которая может быть прервана новым запросом. При передаче "потока данных" один из "помощников" полностью захватывает канал передачи данных, однако при выдаче "мастером" любого нового запроса по любому адресу передача потока прекращается. Поток прекращается по специальному запросу либо по запросу "идентификация устройства".

12.5.7. Коды запросов и список параметров

Коды запросов и список параметров представлены в главах 13 и 14.

13. Описание Ethernet интерфейса

Ethernet интерфейс используется только для передачи данных. Параметризация микрометров осуществляется по интерфейсу RS232 или RS485.

13.1. Режимы работы

Интерфейс может работать в режимах:

- отключен, нет передачи.
- асинхронный режим, результаты передаются по мере их готовности;
- синхронный режим, результаты передаются в соответствии с настройкой режима выборки (по времени, либо по внешнему входу).

13.2. Протоколы передачи

Возможны два вида протоколов:

- MAC-уровень OSI. Пакеты передаются в соответствии с протоколом 802.3.
- Протокол передачи IP/UDP.

13.3. Формат пакета, МАС-уровень

Микрометр передает МАС пакет длиной 28 байт:

-байты 0-5 : МАС адрес получателя;

-байты 6-11 : MAC адрес отправителя: 0x00; 0x20; 0xED;

0x03; serial number H; serial number L;

-байты 12-13 : длина пакета: 0x00; 0x1D;

-байт 14 : тип датчика – 65; -байт 15 : версия ПО – 20; -байты 16–17 : серийный номер;

-байты 18–19 : расстояние "излучатель-приемник";

-байты 20–21 : рабочий диапазон;

-байт 22 : циклический счетчик пакета – инкрементиру-

ется на каждый переданный пакет;

-байт 23 : измерение, байт 3; -байт 24 : измерение, байт 2; -байт 25 : измерение, байт 1; -байт 26 : измерение, байт 0;

-байт 27 : флаг состояния измерения (0/1);

-байт 28 : контрольная сумма

В данном режиме микрометр передает по Ethernet интерфейсу пакет с результатом одного измерения в соответствии с установленным режимом выборки.

13.4. Формат пакета, IP/UDP

Микрометр передает IP/UDP пакет переменной длинн. Длина пакета зависит от параметра {0x52h}, определяющего количество измерений в пакете. Пакет состоит из заголовка и поля данных.

-байты 0-5 : MAC адрес получателя;

-байты 6-11 : MAC адрес отправителя: 0x00; 0x20; 0xED;

0x03; serial_number_H; serial_number_L;

-байты 12-13 : Ethernet type: 0x08; 0x00; -байт 14 : IP version & header: 0x45;

-байт 56 +N

-байт 57 +N

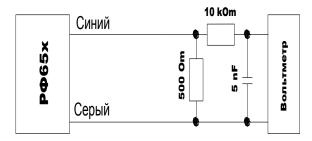
0x00: -байт 15 -байты 16-17 суммарная длина пакета, с учетом заголовка IP; -байты 18-19 ID пакета: 0x08; 0x7F; -байты 20-21 флаги пакета: 0х40; 0х00;; -байт 22 TTL пакета: 0x80 -байт 23: протокол: 0х11; -байты 24-25 контрольная сумма ІР; ІР адрес отправителя; -байты 26-29 -байты 30-33 ІР адрес получателя; -байты 34-35 порт отправителя: 0х13; 0х88; -байты 36-37 порт получателя: 0x02; 0x5D; -байты 38-39 длина пакета UDP; -байты 40-41 контрольная сумма UDP; -байт 42 тип датчика -байт 43 версия ПО -байты 44-45 серийный номер -байты 46-47 базовое расстояние -байты 48-49 диапазон количество измерений в пакете -байт 50 -байт 51 циклический счетчик пакета -байты 52-55 измерение 0 -байт 56 флаг состояния измерения 0 (0/1);

В данном режиме сначала производится заполнение внутреннего буфера передачи микрометра измеренными данными в соответствии с установленным режимом выборки и соответствующим периодом выборки. После заполнения буфера (размер буфера задается параметром) микрометр автоматически передает в сеть UDP пакет с данными, накопленными в этом буфере передачи.

измерение N

флаг состояния измерения 0 (0/1);

14. Аналоговые выходы


14.1. Режимы передачи данных

Аналоговый выход может находиться в одном из трех режимов:

- отключен;
- асинхронный режим, результаты передаются по мере их готовности);
- синхронный режим (выборка по времени, либо по внешнему входу).

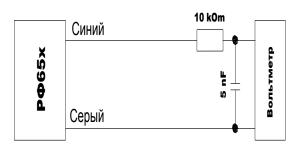

14.2. Токовый выход 4...20 мА

Схема подключения показана на рисунке. Значение нагрузочного резистора не должно превышать 500 Ом. Для уменьшения шума перед измерительным прибором рекомендуется установить RC фильтр. Величина конденсатора фильтра указана для максимальной частоты выборки микрометра (2 кГц) и пропорционально увеличивается при уменьшении частоты.

14.3. Выход по напряжению 0...10В

Схема подключения показана на рисунке. Для уменьшения шума перед измерительным прибором рекомендуется установить RC фильтр. Величина конденсатора фильтра указана для максимальной частоты выборки микрометра (2 кГц) и пропорционально увеличивается при уменьшении частоты.

14.4. Конфигурационные параметры

14.4.1. Диапазон аналогового выхода

При работе с аналоговым выходом для повышения разрешения можно воспользоваться функцией "окно в рабочем диапазоне", которая позволяет выбрать в рабочем диапазоне микрометра окно требуемых размеров и положения, в пределах которого будет масштабироваться весь диапазон аналогового выходного сигнала.

Примечание. В случае если начало диапазона аналогового сигнала задать большим по величине, чем конец этого диапазона, то это изменит направление нарастания аналогового сигнала.

14.4.2. Режим работы аналогового выхода

Аналоговый выход может находиться:

- в оконном режиме или
- в режиме отклонений.

<u>"Оконный режим"</u>. Весь диапазон аналогового выхода масштабируется в заданном окне. Под окном понимается весь диапазон микрометра или любая область в измерительном диапазоне, заданная параметрами "Начало диапазона аналогового выхода и "Конец диапазона аналогового выхода", см. п.<u>15.8</u>. Вне окна на аналоговом выходе "0".

<u>"Режим отклонений"</u>. Для типа результата "отклонение" границы задаются симметрично, относительно значения параметра "Конец диапазона аналогового выхода". Окно автоматически устанавливается в пределах ±(значение параметра)/2. В этом случае, нулевому отклонению будет соответствовать середина диапазона аналогового выхода (12мА или 5В).

15. Коды запросов

15.1. Таблица кодов запросов

Код	Описание	Сообщение	Ответ
запроса		(размер в байтах)	(размер в байтах)
{0x01h}	Идентификация устройства	<u> </u>	-тип устройства (1)
			-версия ПО (1)
			-серийный номер (2)
			-расстояние "излпр."(2)
			-диапазон (2)
{0x02h}	Чтение параметра	-код параметра (1)	-значение параметра (1)
{0x03h}	Запись параметра	-код параметра (1)	_
		-значение параметра (1)	
{0x04h}	Сохранение текущих параметров во	-константа AAh (1)	-константа AAh (1)
	FLASH-памяти		
{0x04h}	Восстановление во FLASH-памяти зна-	-константа 69h (1)	-константа 69h (1)
	чений параметров по умолчанию		
{0x05h}	Защелкивание текущего результата	<u> </u>	
{0x06h}	Запрос результата	<u> </u>	-результат в микромет-
			pax (4)
{0x07h}	Запрос потока результатов	-код источника синхро-	-поток результатов (4)
		низации (1)	
		0x01h – внутренний	
		таймер	
		0x02h – внешний такти-	
		рующий сигнал	
{0x08h}	Прекратить передачу потока	<u> </u>	-
{0x0Ch}	Установка эталонного значения		-константа 0Ch (1)

16. Список параметров

16.1. Параметры включения

Адрес	Параметр	Значение	Функционал
0x20h	Включение/выключение прибора	0	Выключен. Прибор
			находится в энерго-
			сберегающем режиме
		1 (по умолчанию)	Включен.

16.2. Параметры синхронизации

Адрес	Параметр	Значение	Функционал
0x00h	Источник синхронизации по умолча-	0 (по умолчанию)	Выключен, асинхрон-
	нию.		ная передача по го-
	(при подаче питания)		товности результата
		1	Выборка по времени,
			источник - внутренний
			таймер с периодом
			100 микросекунд
		2	Выборка в внешнему
			входу, источник -
			внешний тактирующий
			сигнал
0x01h	Множитель внутреннего тайме-	0-65535	Устанавливает коли-
-	ра/делитель входного тактирующего	(по умолчанию - 0x64h)	чество воздействий
0x02h	сигнала		тактирующего сигнала
			до реакции системы

16.3. Параметры усреднения

Адрес	Параметр	Значение.	Функционал.
0x21h	Усреднение	0 (по умолчанию)	Выключено.
		1	Включено.
0x22h	Количество усредняемых значений	1-4096	Количество усредняе-
_		(по умолчанию 0x04h)	мых значений.
0x23h			

16.4. Параметры типа измерений

Адрес	Параметр	Значение	Функционал
0x24h	Тип измерения	0 (по умолчанию)	Измерение положения одной границы (нож);
		1	Расстояние между границами А и В (измерение размера объекта). Результат = В – А. (Номера границ А и В задаются параметрами 0x25h и 0x26 h).
		2	Положение объекта – (B+A)/2.
		3	Положение границы А.
		4	Положение границы В.
0x25h	Номер контролируемой границы А	0-127 (по умолчанию 0x00h)	A – Порядковый номер границы А.
0x26h	Номер контролируемой границы В	1-127	В - Порядковый номер

(0 0 41)	_
(по умолчанию 0x01h)	I границы В.
	і ірапицы Б.

16.5. Параметры номинального значения и допусков

Адрес	Параметр	Значение	Функционал
0x40h -	Номинальное значение	0 - диапазон датчика (по умолчанию 0x00h)	Определяет значение номинала, относитель-
0x43h			но которого вычисля- ется отклонение
0x45h - 0x48h	Минимальный допуск	В микронах 0 - диапазон датчика (по умолчанию 0х00h)	Задаёт допустимое значение меньше но- минального.
0x49h - 0x4Ch	Максимальный допуск	В микронах 0 - диапазон датчика (по умолчанию равно диапазону датчика)	Задаёт допустимое значение больше номинального.

16.6. Параметры управления логическими выходами

Ох44h Байт управления полярностью выходной логики Полярность X Y Z, где х,х,х,х,х,X,Y,Z бит Z - бит управления логикой сигнала Low-Limit: О — LowLimit активный уровень низкий, 1 — LowLimit активный уровень высокий; бит Y - бит управления логикой сигнала High-Limit: О — HighLimit активный уровень низкий, 1 — HighLimit активный уровень высокий; бит X - бит управления
логикой сигнала PASS: 0 — Normal активный уровень низ-кий, 1 — Normal активный уровень высо-кий;

16.7. Параметры последовательного интерфейса

Адрес	Параметр	Значение.	Функционал.
0x10h	Режим выдачи результата	0 (по умолчанию)	Выключен.
		1	Асинхронный.
			Выдача результата по
			готовности
		2	Синхронный, согласно
			настройкам парамет-
			ров синхронизации
0x11h	Скорость передачи данных по после-	X*2400	Значение параметра,

-	довательному интерфейсу	(по умолчанию 0x60h)	X = 48;
0x12h			48*2400=115200
0x13h	Сетевой адрес	1 (по умолчанию)	Сетевой адрес

16.8. Параметры аналогового выхода

Адрес	Параметр	Значение.	Функционал.
0x30h	Режим выдачи результата	0 (по умолчанию)	Выключен.
		1	Асинхронный.
			Выдача результата по
			готовности.
		2	Синхронный.
			согласно настройкам
			параметров синхрони-
			зации.
0x31h	Начало диапазона аналогового выхода	В микронах.	Определяет точку
-		(по умолчанию - 0)	внутри диапазона при-
0x34h			бора, в которой анало-
			говый выход принима-
			ет минимальное зна-
			чение.
0x35h	Конец диапазона аналогового выхода	В микронах.	Определяет точку
-		(по умолчанию равно	внутри диапазона при-
0x38h		диапазону прибора)	бора, в которой анало-
			говый выход принима-
			ет максимальное зна-
			чение.
0x39h	Режим работы аналогового выхода	0 (по умолчанию)	Оконный режим
			D
		1	Режим отклонений

16.9. Параметры Ethernet

Адрес	Параметр	Значение.	Функционал.
0x50h	Режим выдачи результата	0 (по умолчанию)	Выключена.
		1	Асинхронная.
			Выдача результата по
			готовности.
		2	Синхронная.
0x51h	Вид пакета	0	MAC
		1 (по умолчанию)	IP/UDP
0x52h	Количество измерений в пакете	0-255	
		(по умолчанию 0x05h)	
0x53h	МАС адрес получателя	по умолчанию	
-		00h-00h-00h-00h-	
0x58h		00h	
0x59h	Маска подсети	по умолчанию	
-		FFh-FFh-FFh-00h	
0x5Ch			
0x5Dh	IP адрес отправителя	по умолчанию	
-		C0h-A8h-00h-02h	
0x60h			
0x61h	IP адрес получателя	по умолчанию	
-		C0h-A8h-00h-01h	
0x64h			

16.10. Заводские значения параметров

Адрес	Параметр	Значение по умолчанию
0x00h	Источник синхронизации по умолчанию	00h

0x01h	Множитель внутреннего таймера/делитель входного	64h
- 000h	тактирующего сигнала	- 00h
0x02h 0x10h	Работа поспеловательного интерфейса в режиме	00h 00h
	Работа последовательного интерфейса в режиме «поток»	0011
0x11h	Скорость передачи данных по последовательному	60h
0x12h	интерфейсу	- 00h
0x12h	Сетевой адрес	01h
	·	
0x20h	Включение/выключение прибора	01h
0x21h	Усреднение	00h
0x22h	Количество усредняемых значений	04h
0x23h		- 00h
0x23H	Тип измерения	00h
0,2411	тип измерения	0011
0x25h	Номер контролируемой границы А	00h
0x26h	Номер контролируемой границы В	01h
0x30h	Режим выдачи результата	01h
	аналогового выхода	
0x31h	Начало диапазона аналогового выхода	00h
- 0.24h		00h
0x34h		00h 00h
0x35h	Конец диапазона аналогового выхода	Равно диапазону датчика
-	Копец диапазопа апалогового выхода	т авпо длапазоту дат има
0x38h		
0x40h	Номинальное значение	00h
- 401		00h
0x43h		00h
0x44h	Байт управления выходной логикой	00h 00h
084411	ваит управления выходнои логикои	OOH
0x45h	Минимальный допуск	00h
-		
0x48h	M	D
0x49h -	Максимальный допуск	Равно диапазону датчика
0x4Ch		
0x50h	Работа ETHERNET в режиме «поток»	01h
0x51h	Вид пакета	01h
0x52h	Количество измерений в пакете	05h
0x53h	МАС адрес получателя	00h
-		00h
0x58h		00h
		00h 00h
		00h
0x59h	Маска подсети	FFh
-		FFh
0x5Ch		FFh
		00h

0x5Dh	ІР адрес отправителя	02h
-		00h
0x60h		A8h
		C0h
0x61h	IP адрес получателя	01h
0x61h -	IP адрес получателя	01h 00h
	IP адрес получателя	

16.11. Примечания

- Все значения представлены в двоичном виде.
- Диапазон задается в миллиметрах.
- Значение передаваемого микрометром результата составляет 4 байта и представлено в микрометрах
- По специальному запросу (05h) текущий результат, может быть, защелкнут в выходном буфере, где он будет оставаться в неизменном виде до прихода запроса передачи данных. Этот запрос может быть передан всем микрометрам в сети одновременно в широковещательном режиме для синхронизации момента съема данных со всех микрометров.
- При работе с параметрами следует иметь в ввиду, что при выключенном питании параметры хранятся в энергонезависимой FLASH-памяти датчика. При включении питания они считываются в оперативную память контроллера датчика. Команда записи новых параметров меняет только их текущие значения в оперативной памяти. Для того чтобы эти изменения сохранились при следующем включении питания, необходимо выполнить специальную команду сохранения текущих значений параметров во FLASH-памяти.
- Параметры, которые имеют размерность более одного байта, должны сохраняться, начиная со старшего байта и заканчивая младшим.
- **ВНИМАНИЕ!** Запрещено выполнять конфигурирование датчиков, включенных в сеть RS485.

16.12. Примеры установки параметров

- Измерение положения ножа 1 граница, A = 0, B = 1; Параметры [0x24h] = 00h, [0x25h] = 00h;
- Измерение диаметра 2 границы, A = 0, B = 1; Параметры [0x24h] = 01h, [0x25h] = 00h, [0x26h] = 01h;
- Измерение размера щели 2 границы, A = 0, B = 1; Параметры [0x24h] = 01h, [0x25h] = 00h, [0x26h] = 01h;
- Измерение центра стержня 2 границы, A = 0, B = 1; Параметры [0x24h] = 02h, [0x25h] = 00h, [0x26h] = 01h;
- Измерение внутреннего диаметра кольца 4 границы, A = 1, B = 2; Параметры [0x24h] = 01h, [0x25h] = 01h, [0x26h] = 02h;

16.13. Примеры сеансов связи

1) Запрос "идентификация устройства".

Условия: адрес устройства — 1, код запроса — $\{0x01h\}$, тип устройства — 61, версия ПО — 88 (58h), серийный номер — 0402 (0192h), расстояние "излучательприемник"— 80мм (0050h), диапазон — 50мм (0032h), номер пакета — 1.

Формат запроса:

Байт 0	Байт 1	[Байты 2N]

	INC0(7:0)				NC1	(7:0)	MSG
0	ADR(6:0)	1	0	0	0	COD(3:0)	

Запрос "мастера"

Байт 0											Бай	іт 1			
INC0(7:0)									I	NC1	(7:0)			
0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	1
01h									8′	1h					

Формат двух посылок данных "ответа" для передачи байта DAT(7:0):

	DAT(7:0)									
		Байт	- 0		Байт 1					
1	0	CNT(1:0)	DAT(3:0)	1	0	CNT(1:0)	DAT(7:4)			

Ответ "помощника":

Тип устройства:

							DAT	(7:0)							
	Байт 0										Бай	йт 1			
1	0	0	1	0	0	0	1	1	0	0	1	0	1	1	0
	91h										96	3h			

Версия ПО

							DAT	(7:0)							
	Байт 0								Байт 1						
1	0	0	1	1	0	0	0	1	0	0	1	0	1	0	1
						95	5h								

Серийный номер

							DAT	(7:0)							
	Байт 0								Байт 1						
1	0	0	1	0	0	1	0	1	0	0	1	1	0	0	1
			9	2h				99h							
							DAT	(7:0)							
			Ба	йт 2							Бай	йт 3			
1	1 0 0 1 0 0 1								0	0	1	0	0	0	0
	91h										9(0h			

Базовое расстояние

DAT(7:0) Байт 0 Байт 1 1 0 0 1 0 0 0 0 1 0 0 1 0 1 0 1 0 1 0 1 99h DAT(7:0) Байт 2 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 90h 90h		<u> </u>														
1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>DAT</td> <td>(7:0)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								DAT	(7:0)							
90h 95h DAT(7:0) Байт 2 Байт3 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				Ба	йт 0							Бай	йт 1			
DAT(7:0) Байт 2 Байт3 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0	1	0	0	1	0	0	0	0	1	0	0	1	0	1	0	1
Байт 2 Байт3 1 0 0 1 0 0 1 0				9	0h				95h							
1 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0								DAT	(7:0)							
				Баі	йт 2							Баі	йт3			
90h 90h	1	0	0	1	0	0	0	0	1	0	0	1	0	0	0	0
				9	0h			•				90)h	•		

Диапазон

☐															
							DAT	(7:0)							
	Байт 0								Байт 1						
1	1 0 0 1 0 0 1 0								0	0	1	0	0	1	1
			9	2h							93	3h			
							DAT	(7:0)							
	Байт 2										Бай	йт 3			
1	0	0	1	0	0	0	0	1	0	0	1	0	0	0	0

90h 90h //C# code example $out_data[0] = 0x01;$ $out_data[1] = 0x81;$ SerialPort.Write(out_data, 0, 2); Thread.Sleep(50); SerialPort.Read(in data, 0, 16); SensorType = $((in_data[0] \& 0x0F) + ((in_data[1] \& 0x0F) << 4));$ Release = $((in_data[2] \& 0x0F) + ((in_data[3] \& 0x0F) << 4));$ Serial = ((in_data[4] & 0x0F) + ((in_data[5] & 0x0F) << 4) + ((in_data[6] & 0x0F) << 8) + ((in data[7] & 0x0F) << 12)); Base distance = ((in data[8] & 0x0F) + ((in data[9] & 0x0F) << 4) + ((in data[10]))& 0x0F) << 8) + ((in data[11] & 0x0F) << 12)); Measure_Range = ((in_data[12] & 0x0F) + ((in_data[13] & 0x0F) << 4) + ((in_data[14] & 0x0F) << 8) + ((in_data[15] & 0x0F) << 12)); Примечание: так как номер пакета = 1, CNT=1 2) Запрос "чтения параметра". Условия: адрес устройства —1, код запроса – 02h, код параметра — 05h, значение параметра — 04h, номер пакета — 2. Запрос ("мастер") — 01h;82h; Сообщение ("мастер") — 85h, 80h; Ответ ("помощник") — A4h, A0h //C# code example paramADR = 0x05; $out_data[0] = 0x01;$ $out_data[1] = 0x82;$ $out_data[2] = (byte)((paramADR \& 0x0F) + 0x80); //low$ $out_data[3] = (byte)((((paramADR & 0xF0) >> 4)) + 0x80); //high$ SerialPort.Write(out_data, 0, 4); Thread.Sleep(50); SerialPort.Read(in_data, 0, 2); paramVALUE = (long)((in_data[0] & 0x0F) + ((in_data[1] & 0x0F) << 4));</pre> 3) Запрос "запрос результата". Условия: адрес устройства — 1, значение результата — 02A5h, номер пакета — 3. Запрос ("мастер") — 01h;86h; Ответ ("помощник") — B0h, B0h, B0h, B0h, B0h, B2h, BAh, B5h Измеренное смещение (микрон): X=0x000002A5h=677 MKM.//C# code example $out_data[0] = 0x01;$ out_data[1] = 0x86; SerialPort.Write(out_data, 0, 2); Thread.Sleep(50); SerialPort.Read(in_data, 0, 8); UInt32 temp1 = (UInt32)((in_data[0] & 0x0F) + ((in_data[1] & 0x0F) << 4) +</pre> ((in_data[2] & 0x0F) << 8) + ((in_data[3] & 0x0F) << 12)); UInt32 temp2 = (UInt32)((in_data[4] & 0x0F) + ((in_data[5] & 0x0F) << 4) +</pre> ((in_data[6] & 0x0F) << 8) + ((in_data[7] & 0x0F) << 12)); Int32 Measure = (Int32)(temp1 + (temp2 << 16));</pre> 4) Запрос: "запись "Предделитель источника синхронизации"".


```
Условия: адрес устройства – 1, код запроса – 03h, адрес параметра –
[0x01h,0x02h], Размер параметра 2 байта, значение параметра – 0x11FFh.
Запрос ("мастер") - 01h, 83h;
Сообщение ("мастер") – 82h, 80h, 81h, 81h;
Запрос ("мастер") - 01h, 83h;
Сообщение ("мастер") - 81h, 81h, 8Fh, 8Fh;
//C# code example
       NewValue = 0x11FF;
       Param_Size=2;
       Param_Adress = 0x01;
       while (Param_Size > 0)
               out_data[0] = 0x01;
               out_data[1] = 0x83;
               out_data[2] =(byte)((((byte)(Param_Adress + Param_Size-1))& 0x0F)+ 0x80);
               out_data[3] =(byte)((((byte)(Param_Adress + Param_Size-1)&0xF0)>>4)+0x80);
               out_data[4] =(byte)(((NewValue >> (8 * Param_Size - 8)) & 0x0F) + 0x80);
               out_data[5] =(byte)(((NewValue >> (8 * Param_Size - 4)) & 0x0F) + 0x80);
               SerialPort.Write(out data, 0, 6);
               Param_Size--;
       }
5) Запрос: "Запрос потока результатов" синхронно внутреннему таймеру.
Условия: адрес устройства – 1, код запроса – 07h, Сообщение ("мастер") — 01h.
Запрос ("мастер") - 01h, 87h
Сообщение ("мастер") - 82h, 80h,
//C# code example
       out data[0] = 0x01;
       out data[1] = 0x87;
       out data[2] = 0x81;
       out_data[3] = 0x80;
       SerialPort.Write(out_data, 0, 4);
       while(true)
       {
               SerialPort.Read(in data, 0, 8);
               UInt32 temp1 = (UInt32)((in_data[0] & 0x0F) + ((in_data[1] & 0x0F) << 4) +</pre>
               ((in data[2] \& 0x0F) << 8) + ((in data[3] \& 0x0F) << 12));
               UInt32 temp2 = (UInt32)((in_data[4] & 0x0F) + ((in_data[5] & 0x0F) << 4) +</pre>
               ((in_data[6] & 0x0F) << 8) + ((in_data[7] & 0x0F) << 12));
               Int32 Measure = (Int32)(temp1 + (temp2 << 16));</pre>
       }
```


17. Примеры Ethernet пакетов

17.1. Вид пакета МАС

- Параметр [0x51h] установлен в 0 (МАС уровень).
- Установлен MAC адрес получателя [0x53h 0x58h]
- Интерфейс настроен на работу в режиме "поток"
- Включен поток результатов (параметр [0x00h], запрос {0x07h})

Формат принимаемого пакета:

	0-7	8-15	16-23	24-31	32-39	40-47				
0	МАС адрес получателя.									
1	МАС адрес	MAC адрес отправителя: 0x00; 0x20; 0xED; 0x03; serial_number_H; serial_number_L;								
2	Длина пакета	n: 0x00; 0x1C;	Тип датчика	Версия ПО	Серийнь	ій номер				
3	Расстояние ⁽ приё	'излучатель- иник"	Рабочий д	циапазон	Циклический счетчик па- кета	Измерение, байт 3				
4	Измерение, байт 2			Флаг со- стояния измерения (0/1)	Контрольная сумма	Not used				

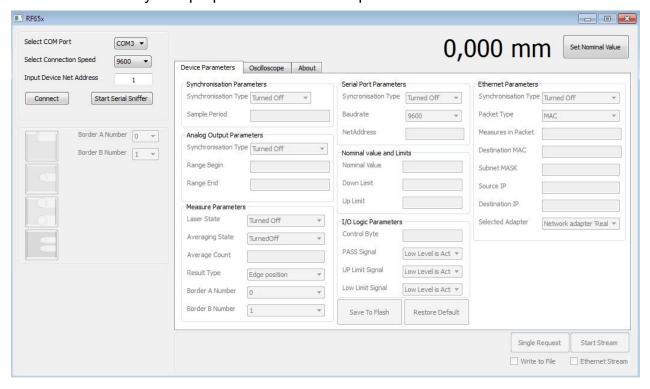
17.2. IP/UDP

- Параметр [0х51h] установлен в 1 (IP уровень).
- Установлен МАС адрес получателя [0x53h 0x58h]
- Интерфейс настроен на работу в режиме "поток"
- Включен поток результатов (параметр [0x00h], запрос {0x07h})

Формат принимаемого пакета:

	0-7	8-15	16-23	24-31	32-39	40-47			
0			МАС адрес	получателя.					
1	MAC адрес отправителя: 0x00; 0x20; 0xED; 0x03; serial_number_H; serial_number_L;								
2	Ethernet type	e: 0x08; 0x00;	IP version & header: 0x45	0x00	Суммарная д	цлина пакета			
3	ID: Циклически та	й счетчик паке- а;	Flags: 0x	40; 0x00;	TTL: 0x80	Protacol: 0x11			
4	Chec	ksum		IP адрес от	правителя:				
5		ІР адрес п	олучателя:		Порт отправите	еля: 0х13; 0х88;			
6	Порт получате	ля: 0x02; 0x5D;	Длина па	кета UDP	Контролы	ная сумма			
7	Тип датчика	Версия ПО	Серийнь	ій номер	Базовое р	асстояние			
8	Диап	азон	Количество	Циклический	Измерение_0,	Измерение_0,			
			измерений в	счетчик паке-	байт 3	байт 2			
			пакете	та					
9	Измерение_0,	Измерение_0,	Флаг состоя-						
	байт 1	байт 0	ния измере- ния 0 (0/1)						
10			Измерение N,	Измерение_N,	Измерение_N,	Измерение_N,			
			байт 3	байт 2	байт 1	байт 0			
11	Флаг состоя-	Not used	Not used	Not used	Not used	Not used			
	ния измере-								
	ния_N (0/1)								

18. Программа параметризации

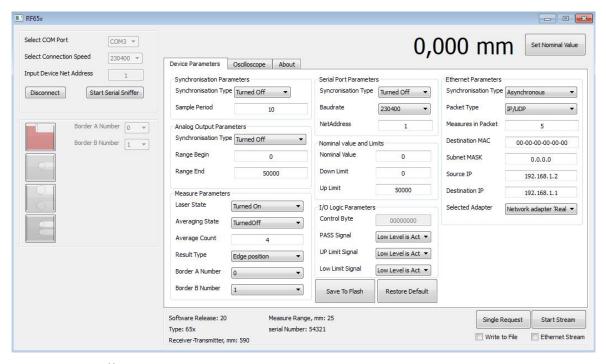

18.1. Назначение

Программное обеспечение **RF65X-SP** (<u>www.riftek.com/resource/files/rf65x-sp-zip</u>) предназначено для:

- 1) тестирования и демонстрации работы микрометров серии РФ65х:
- 2) настройки параметров микрометра;
- 3) приема и накопления данных с микрометра;

18.2. Установка соединения с микрометром

После запуска программы появляется рабочее окно:



Для установки соединения необходимо:

- выбрать СОМ-порт, к которому подключен микрометр (виртуальный порт, в случае подключения датчика через USB-адаптер)
- выбрать скорость передачи, на которой работает датчик (по умолчанию – 230400)
- задать сетевой адрес датчика
- нажать кнопку **Connect**.

Если установленные параметры соответствуют параметрам интерфейса микрометра, программа выполнит идентификацию микрометра, считает и отобразит его конфигурационные параметры:

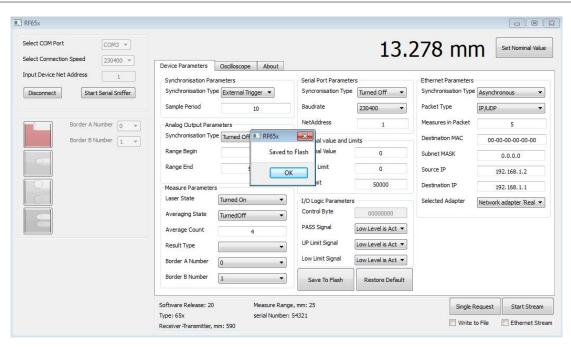
18.3. Настройка и сохранение параметров микрометра

Часть приложения RF65x, ставшая активной, позволяет редактировать и заносить как в ОЗУ, так и во FLASH микрометра соответствующие параметры.

Сама таблица параметров датчика разбита на несколько групп, где группы идентичны логическим группам параметров, описанных в главе <u>15</u>.

Конфигурирование микрометра производится путем выбора предлагаемого пункта из соответствующего выпадающего списка, либо путем ввода абсолютного значения требуемого параметра (все параметры вводятся в десятичном виде, пользователь должен сам следить за правильностью ввода конкретного параметра). После выбора требуемой величины из выпадающего меню система автоматически загрузит параметр в ОЗУ микрометра. При вводе абсолютного значения запись параметра в ОЗУ производится после нажатия на клавишу "ВВОД".

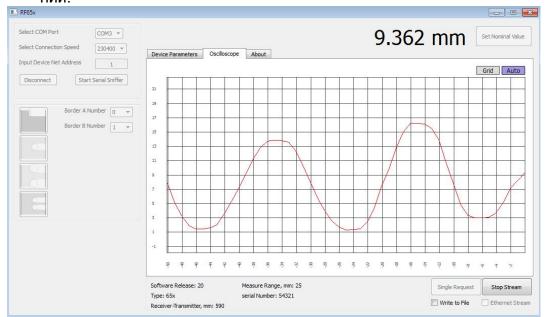
В левой области окна программы расположены кнопки, позволяющие осуществлять быстрое переключение между режимами работы микрометра, а именно, осуществлять выбор типа результата измерений:


- измерение одной границы
- измерение диаметра объекта или его положения
- измерение зазора или его положения
- измерение сложного объекта

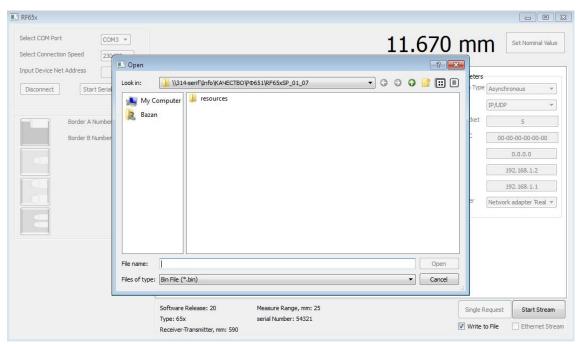
В той же части экрана расположены два выпадающих списка, позволяющих задавать номер измеряемых границ. Кнопки и выпадающие списки являются инструментом для быстрой настройки прибора. Описанные кнопки и выпадающие списки напрямую связаны с полями Result Type, Border A Number, Border B Number которые позволяют произвести более детальную настройку прибора.

18.4. Сохранение параметров и восстановление заводских настроек

В области настройки параметров датчика расположены 2 кнопки "SaveTo-Flash" и "RestoreDefault", они позволяют соответственно сохранить текущие параметры из ОЗУ микрометра в энергонезависимую память и восстановить заводские настройки датчика.

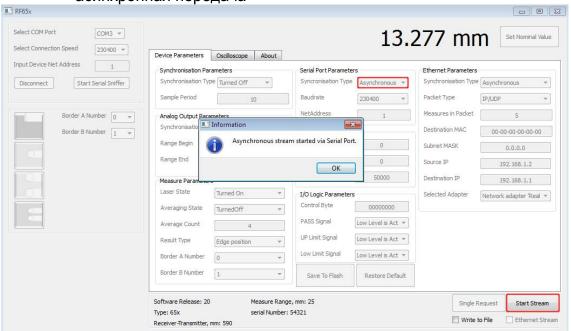


Для вступления изменений в силу необходимо закончить сеанс общения связи и аппаратно перезапустить микрометр путем выключения-включения питания.

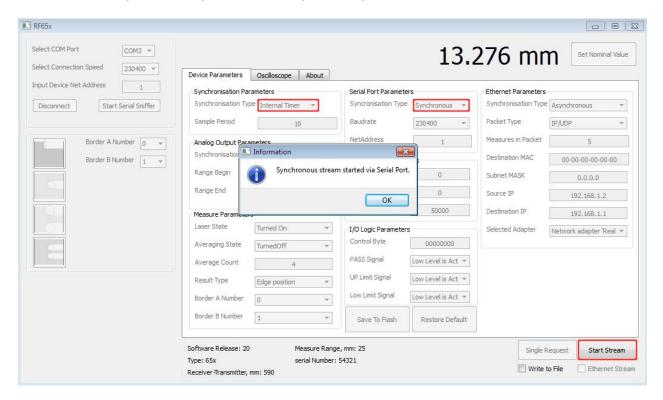

19. Работа с микрометром

- Устанавливаем объект в области рабочего диапазона микрометра
- Для получения единичного замера нажать кнопку SingleRequest
- Для получения непрерывного потока данных необходимо настроить вид синхронизации и нажать кнопку **StartStream.** Результат измерения отображается в области индикации. В области экрана, где находится описанные кнопки существует флажок **Ethernet Stream** он позволяет принимать непрерывный поток данных по Ethernet интерфейсу, а не через последовательный порт.
- Для визуализации истории измерений необходимо перейти на вкладку "Oscillocope". В данной вкладке отображаются последние 50 измерений

Для сохранения всех принимаемых данных в файл необходимо установить флажок в нижней части экрана рядом с соответствующей надписью "Write to File".

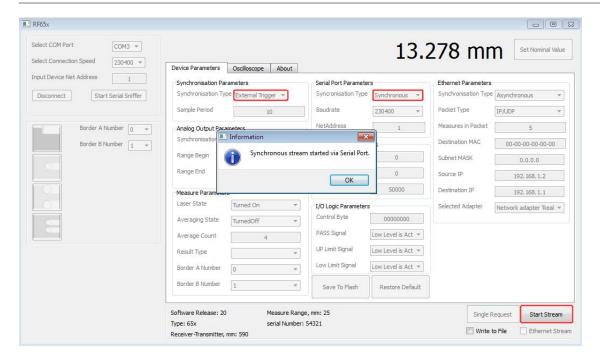


- Существует возможность ручного позиционирования и изменения масштаба отображения графика: нажатие на кнопку **Auto** переводит ее в активное (пассивное) состояние, что позволяет позиционировать и масштабировать график автоматически (вручную).
- Для запоминания последнего полученного результата в качестве номинального необходимо остановить поток измерений и нажать кнопку в нижней правой части экрана Set Nominal Value.

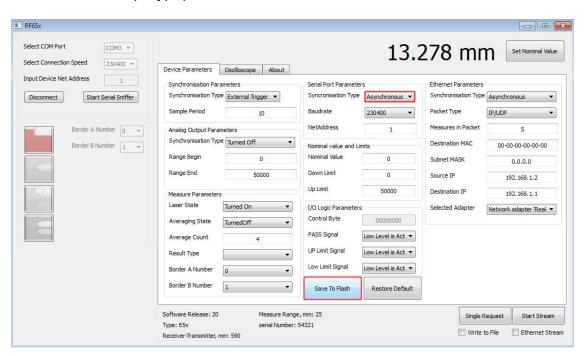


20. Примеры настройки непрерывного потока данных.

• асинхронная передача



• синхронная передача, выборка по времени



синхронная передача, выборка по внешнему входу

Для запуска потока по интерфейсу при запуске прибора необходимо выполнить его конфигурирование и нажать "SaveToFlash".

21. Библиотека RF65X.

С микрометром поставляется SDK, которую можно скачать с адреса (<u>www.riftek.com/resource/files/rf65x-sdk.zip</u>). SDK позволяет пользователю разрабатывать собственные программные продукты, не вдаваясь в подробности протокола обмена данными с микрометром.

22. Гарантийные обязательства

Гарантийный срок эксплуатации Оптических микрометров РФ656 - 24 месяца со дня ввода в эксплуатацию, гарантийный срок хранения - 12 месяцев.

23. Изменения.

Дата	Версия	Описание
21.01.2015	3.1	1. Добавлен раздел лазерной безопасности 2. В разделе 5 исправлена методика обозначения модели: ET-232 исправлено на 232-ET, вход IN помещён после всех выходов 3. В разделе 5 добавлена таблица допустимых модификаций